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SHAPED SCINTILLATION DETECTOR SYSTEMS FOR

MEASUREMENTS OF GAMMA RAY FLUX ANISOTROPY

Abstract

The detection efficiencies of cylindrical detectors for various gamma ray

photon angular distributions have been studied in the energy range from .10 Mev

to 15 Mev. These studies indicate that simple detector systems on small satellites

can be used to measure flux anistropy of cosmic y -rays and the angular distri-

bution of albedo gamma rays produced in planetary atmospheres. The results

indicate that flat cylindrical detectors are most suitable for measuring flux

anisotropy because of their angular response function. A general method for

calculating detection efficiencies for such detectors is presented.
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SHAPED SCINTILLATION DETECTOR SYSTEMS FOR

MEASUREMENTS OF GAMMA RAY FLUX ANISOTROPY

1. Introduction

Recent observations of cosmic gamma rays and theoretical studies of their

implications have indicated that observational data in the 0.3 MeV to 30 MeV

energy range may provide important cosmological information about the early

history of our universe. 1 7 Cosmic gamma-rays in this energy range are

expected to be highly isotropic and thus of cosmological origin. A direct ob-

servational test of the isotropy of the flux can be an extremely sensitive test of

cosmological origin and such a measurement may provide a determination of

the strength of galactic gamma-ray emission in 0.3 to 30 MeV energy region.

Detailed spectral information in this energy range will provide important

information as to the nature and origin of the gamma-radiation.

It may be possible to study the structure of a planet's atmosphere by

measuring the energy and angular distribution of the albedo gamma-rays. Such

measurements will also be considered in this paper.

We present here the results of an investigation of the properties of cylin-

drical detectors which can be used to optimize the design of simple systems for

performing the following measurements:

1. The gamma-ray flux anisotropy.

2. The possible presence of point sources.
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2. Definitions of Effective Cross Sectional Area and Intrinsic Detection

Efficiency

The response of a particular detector system can be evaluated in terms of

a detection efficiency which depends on the geometry of the system and upon the

spatial and angular distribution of the incident flux being measured. Because

source to detector distances in astronomical measurements are very much

greater than detector dimensions, spatial variations over the detector may be

ignored. We will use a rectangular coordinate system (x', y', z') fixed in the

detector to describe positions within the volume of the detector system. We

will denote a spatially fixed coordinate system by the unprimed rectangular

coordinates (x, y, z) and use (b,t) for the latitude and longitude angles. When

one considers the application of the results derived in this section to gamma

ray astronomy, the most convenient unprimed system will be the galactic system.

The angles (b, t ) will be used to describe the direction of the incident photons.

The orientation of the detector system will be specified by giving the latitude

and longitude of the z' and x' axes denoted by bzr, tz, and bx,, Ix,, respectively.

The geometry of a general situation is given in Figure 1. The x' and y' axes

are not included in order to show more clearly the various angles and a photon

flux from direction (b, t) entering the detector at point A (x', y', z'). The

rectilinear path through the crystal along the incident photon direction is denoted

by AB with a distance ( . We will denote the photon flux which is differential in

angle and energy by the quantity
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d2F
f(E, b, ) = dE (1)

dQ

where

dR = d(sin b) dt. (2)

We can then compute C, the total number of photons per unit time and energy

which will interact with the detector, by

C(E ,b* , b.' ,)= f (E, b,)
(3)

{1- exp [- p(E) ~ (bz,, z,, bx' x#,, x ', y', z', b, t] } dA1 d,

where dA1 is the element of detector surface area perpendicular to the direction

(b, t) at the point of entry A (x', y', z') and S' represents the integration over

the surface of the detector where photons enter. The quantity L is the linear

absorption coefficient which is energy dependent and represents the sum of the

photoelectric, Compton, and pair production interactions. The quantity within

the braces represents the probability that the photon will have at least one inter-

action within the crystal. Multiple interactions occur in times shorter than the

decay of the scintillation produced in the detector and thus appear as a single

interaction. These multiple interactions will change the amount of energy

deposited in the crystal but not intrinsic efficiency.

The effective detector cross sectional area is defined as:
C

f fdQ (4)
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and the intrinsic detection efficiency as:

C

f J fddA (5)

The variability of E as a function of energy for three special flux distribution

is illustrated in Figure 2 for a relatively symmetric crystal 10.16 cm long x

10.16 cm in diameter. More extreme shapes most likely will show greater

differences because of increased proportions of short path lengths for an isotropic

flux. Therefore, the quantities -r and E are not useful in the case of an unknown

photon distribution. They are also difficult to calculate for irregular detector

geometries, but special cylindrical cases which are useful will be examined.

3. Response of a Cylindrical Detector to a Parallel Beam

We now specialize the geometry of the crystal to a right cylinder of height,

H, and radius, R, with z' as the axis of symmetry and consider the flux distri-

bution to be a plane wave coming from direction (bo, I0 ). We do the plane wave

case first since the results for a planar and an isotropic flux can be calculated

in terms of the plane wave case. For a plane wave

f=P(E) 8 (sin b - sin bo) 8 ( - ) (6)

Since we have cylindrical symmetry, the only angle of importance is the one

between z' and the direction of the photon beam. We will denote this angle by 0

and it is given in terms of (b 0 , o0 ) and (bZ,, z, ) by

cos 0 = cos b o cos bz, cos (to - tz,) + sin b0 sin bz,, (7)
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and P(E) has units of photons/cm 2 - sec-MeV. In this case we obtain

77(E, 8) = 2RH Sin 1 - cos 8 xp - 2/R cos P d

+ 7rR2 cOs r +  4  O7r/ 2  (
/ s 1 d

iR cos R - cos2 /3 exp - 28R Cos / dp

4Rf sin 0 cos r o /3 p \ s 

for tan 8 2R/H, and

7(E, )=2RHsin0 - cos [exp- 2sRio8 d + sina xp-

+7R2 cos 8 1+ 4 / 2 cos exp- s8 2 sin ) e 2exp ]
-- { cos/3[xp-(2/Rc s /3)d/3cs)

(9)
4R sinO cos - /2cos 3 exp- 2LRcs d 3-sina exp- 2H
A sin8 J [0 csj

for tan 2R/H, where Cos a = H/2R tan 0 and cos P = ~/2R.

The intrinsic detection efficiency is then given by

77 (0)
p (0) (10)

2RH sin 6 + 7TR 2 cos

5



This case is useful when one is dealing with a single distant point source

since the detector counting rate will be given by

C (E, 8) = 7p (E, 9) P(E) (11)

for a given energy photon E and by

Cs(2 ET, 0) = 77P(E) dE (12)

ET

for all photons above a threshold energy ET .

4. Response of a Cylindrical Detector to a Planar Flux

For simplicity of calculation we consider the planar or disc. like flux to lie

in the plane b = 0. In this case

f = J(E) 8(sin b) (13)

and J has units of photons/cm2 -sec-MeV-rad. We wish to consider only two

orientations of the cylindrical detector. Case 1: The z' axis lies in the plane

b = 0 (i.e., z z= 0). Case 2: The z' axis is perpendicular to this plane (i.e.,

S z' = I II I). For Case 1, we find from (7) that

0 =t -t ,
z

and we can choose ,Z '= 0 without loss of generality. Then we have, by performing

the integration in (3),

C (E, b = 0) = J(E) p(E, 0) dO (14)

0
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Since

f fd = 2nJ (E) (15)

and

f f fdadA = 4[2RH + 7R2] j(E) (16)

we obtain

77(E, b', 0) 2. 2 77(E, 0) dO (17)

and

S77(E, ) dO

EJ(E, b , = 0) = (18)
[2RH + 7R 2 ]

For certain purposes, it is useful to define an effective geometric factor in this

case by

G (E b = 0) 4 (E, ) dO (19)

We note that G has units of cm 2 -rad. For the 2nd case we have from (7) that

0 = 7T/2 and it follows that

Cj (E, b Z, = 7/2) = 27J(E) 7p (E, 7T/2), (20)

77 (E, b z, = 7/ 2)= 77p (E, 7n/2), (21)

S f ddA = 47RHJ (E), (22)
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EJ(E, b , = 7T/2) = , (23)
2RH

and

G (E, b z, = rrT/2) = 27Tn p(E, 7T/2). (24)

5. Response of a Cylindrical Detector to an Isotropic Flux

In the case of an isotropic flux

f(b, ,, E) = I(E), (25)

where I(E) has units of photons/cm2-sec-MeV-ster. For simplicity of calculation

and without any loss of generality we take the (x', y', z') system exactly coincident

with the (x, y, z) system. Then we find from (7) that 8 = 7r /2-b 0 and

C (E) = 4rI(E) f 7"p(E, 8) d(cos 8), (26)

77 (E) = 7jP (E, 8) d(cos 0), (27)
0

fdfdA = 27T2RI(H + R), (28)

and

El (E) 2 7p (E, 0) d(cos 8). (29)
7R (H + R) 0 (

8



In this case we also define an effective geometrical factor by

C (E) "r/2

GI(E) = = 47 77 (E, 8) d(cos 8) (30)

and GI has units of cm 2-ster.

6. Measurement of Cosmic Gamma Ray Flux Anisotropy with a Cylindrical

Crystal

The effective geometry factors, GJ (E, O), Gj (E, 7/2) and G, (E) can be

used to show how the anisotropy of the cosmic gamma ray flux in the energy

range 1-10 MeV can be measured or have a sensitive upper limit placed on it.

If the flux is not isotropic, the most likely source of excess photons will be

from the galactic plane. We consider a spinning satellite placed in an orbit such

that it spends a considerable fraction of its time away from the particle radiation

environment near the earth and has its spin axis in the galactic plane. Spallation

effects produced by cosmic rays in Nal and. CsI crystals are not considered,

although they have been shown (Reference 11, 12) to be an important background

in determining the true cosmic gamma ray flux. However, these will not interfere

with the measurement of the flux from the galactic plane by this method, but will

increase the background and the error in the determination of anisotropy.

A flat cylindrical (disc) crystal placed in the spinning satellite with a diameter

lying in the spin axis will result in a motion such that the z' axis will spend some

of its time perpendicular to the galactic plane and some of its time in the galactic

plane. We show later that a disc is better than a rod for a given mass detector.

9



We denote the total amount of time spent in each position to be T; then the total

counts per unit energy will be for the case of z' perpendicular to the galactic

plane

C (E) I(E) G (E) + J(E) G3 (E, J7TT (31)

and for the case z' parallel to the galactic plane

C1 (E) = [I(E) G, (E) + J (E) Gj (E, 0)] T. (32)

These can be solved for J(E) and I(E) to obtain

(CII - CI) (33)

G(E, 0)- G (E )

and if we assume that I > > J

1 - (C - C ) G (E, 0) C11  C1  (34)

IT [Gj (E, 0) - GJ E, L] GIT GIT

We know from experimental evidence that J is small in the energy range of

interest and therefore C, = C 1 . We will define a geometrical sensitivity factor

for a monoenergetic flux by the quantity

Gj(E, 0)-G(G E, 7
S' = (35)

G (E)

and the effective anisotropy by the quantity

- 2nJ _ J (36)
41I 21

10



Since I = I.TRUE + Background, we cannot measure true anisotropy by this

method. The effective anisotropy will be less than the true anisotropy. With

this understanding, we can write

C1 - C 1 (37)

= 2C S'

The statistical error (i.e. standard deviation) in 8 is

S(C + C- ) 1/ 2  (C - C) c 1 (38)

since C Then if we use the criterion that the minimum measureable

quantity must be 3 times the standard deviation, the smallest value of 8 that

can be observed is

3min 
(39)

Now to write this in terms of I and T, we use (34) to obtain

1 min3 V1 (40)
M t 21GT S 21T

where

Gj (E, 0) - G E ) (41)
G(E o)-Gj(E'2) (41)

s:s' G~ I:

Thus for a fixed value of I, one can decrease the minimum measureable value

of 8 by making SI as large as possible and by increasing T.
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In the case of an integral spectrum we can follow a similar analysis by

starting with (31) and (32) and integrating over E.

Ci(> E) = I(E) G, (E) dE + J(E) G (E dE T (42)

C1, (> E) = I(E) G (E) dE + J(E) G (E, 0) dE] T (43)

Another useful quantity can be obtained from rewriting equations (42) and

(43) in the following way

CI(> E) = I(E) dE + G JT (E) dE (42a)

fE E

C11 (> E) = G I (E) dE + GJ (0) f J(E) dE, (43a)

E E

where

GI I(E) dE

G -- E (44)

I(E) dE

f , J (E) dE

= E (45)

J (E) dE

12



and

f Gj(E, 0) J(E) dE

G (0) = (46)

{ J(E) dE

These average values of the G's can then be used to determine the sensitivity

factor S and S' for particular spectral distributions of interest.

To illustrate some points we consider the case of an opaque detector i.e.,

I - a . In this case, we see from equation (8) and (9) that

7?p(O) = 2RH Sin 0 + -rR 2 Cos 8.

This means that

G (0) = 4R[2H + n , (47)

Gj ()= 4RH, (48)

G, = 27r 2 R(H + R), (49)

and

S= [L (1 27T (50)

where a= H/R.

13



If S = 0, the detector will have no sensitivity to flux anisotropy for the two

orientations considered above. From equation (50), S will be zero for

a =- - 2.75
r-2

or

H - 2.75R

Thus for the limiting case of an opaque crystal, when the height becomes some-

what greater than the crystal diameter, the ability to detect flux anisotropy by a

rotating crystal becomes very small.

The sensitivity factor S for CsI is shown as a function of height for a number

of crystal radii in Figure 3 for p/ = 4 (- .15 MeV), in Figure 4 for /u = .4 (" .56

MeV), and in Figure 5 for p = .165 (- 3 MeV to 7 MeV).

The choice of crystal size for maximum sensitivity to the proposed flux

anisotropy can be determined from such sensitivity curves. The curves tend to

indicate maxima for the higher energy gamma radiation (Figure 4 and 5).

Although not shown in the figures, it has been found that for a given volume

(mass) of crystal, it is better in terms of sensitivity to use a disc (2R > H)

rather than rod (H > 2R).

As an example, the results of calculations of the minimum measureable 3

for a 2 inch thick by 8 inch diameter CsI crystal are presented. For this case

the isotropic gamma ray spectrum (approximated by I = .024E- 1.7 ) between .3

14



and 10 MeV as measured by one experiment on Apollo 15 (Reference 7) was used.

A power law spectrum with a variable exponent was used for the planar flux.

The results are not sensitive to this exponent for spectra harder than an index

of minus 2. GI, Gj (0), and G (7T/2) were calculated for these spectral distri-

butions. A flight time of 90 days was assumed with a 10 percent duty time in

each orientation with respect to the planar flux. Using equations (40) and (44)

yields the minimum effective anisotropy which can be measured by the system

of .00038. Using equation (36) and the isotropic flux yield a total planar intensity

in the .3 to 10 MeV range of 5.5 x 10-s photons/cm 2 -rad-sec for differential

energy spectrum with a minus 1 exponent.

7. Measurement of Sources in the Galactic Plane

One can examine the use of this simple system for the detection of sources

in the galactic plane. Essentially, the detection efficiency, r7p , (E, 6), in equa-

tions 8 and 9 reflects the detector's response as a function of phase angle 6

(i.e., the angle between the direction of the source and the cylindrical crystal

axis). Figure 6 is a polar plot of the ratio

77p (E, 0)

as a function of phase angle 0 for a 40.64 cm x 2.54 cm CsI right cylindrical

crystal. The calculation was made for approximately 4 MeV gamma rays.

Maximum sensitivity is obtained with the face of the crystal pointing toward the

source (9 = 0). As one rotates the crystal the count rate decreases until 0 = 7T/2.

15



The count rate decreases by a factor of 4.5, with the greatest change occuring

near minimum. Thus, a source would be better noticed by the minimum rather

than the maximum in count rate. We can define an aperture or angular resolution

as the width in degrees at half the counting rate. The angular resolution of this

system would be - 180.

The sensitivity of the system to the detection of point sources is obtained by

calculating the expected count for 6 = 0 and 0 = 7T/2 with respect to the source

in the presence of the isotropic flux considered in the previous section. The

total expected counts, C1 , for 0 = 0 would be

C1 = T I77dE + f PP (E, 0) dE] ,

where P is the parallel beam flux due to the source in photons/cm 2 -sec-MeV.

The total expected counts for 0 = 7/2 would be

C2 =T 17 dE + P p E, 7) dE].

We now define

I= I dE,

P = PdE,

- I77 1 dE

16



and
and P77 (6) dE

-E

P

Then the point source strength averaged over energy can be found from the

difference in counting rate and known average crystal properties by

p C= - C2  
(51)

The standard deviation, c of P for weak sources is

- 2 t 1 (52)
P 2( ) 7-T

For detectability, again we require that

p. _3 = 3 (53)
min p ®r

Izp(0) - 2

Assuming an integrated omnidirectional flux, I of 7.2 x 10 - 2 photons/cm2 -sec-

ster and a measurement time of T = 2.6 x 10s sec in each position (similar to

the situation discussed previously), Pmin 4 x 10-4 photons/cm2-sec, could

theoretically be detected. Galactic sources such as the Crab Nebula are about

an order of magnitude greater than this. Systematic errors can, of course,

decrease this sensitivity.
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8. Measurement of Atmospheric Albedo Gamma Ray Distribution

This methodology of reducing calculations to integrations over the parallel

beam case can be applied to more general flux distributions than planar or point

sources. An example is the atmospheric albedo gamma ray flux. For this case

the space coordinates are such that the z axis extends from the detector to the

nadir. The flux is considered to be independent of t. Calculations are done for

a monoenergetic flux.

The albedo is much greater than the cosmic flux, so the isotropic background

is not important in this case. The main concern here is the detailed variation of

the counting rate with detector orientation. Equations (8) and (9) are again used

to define u . Using equation (7) to define 0 in terms of the flux and detector

orientation angles, the counting rate for a given orientation can be written as,

C(E, bz,) = nk(E, - z', b i, b) K(b) db d(t - 4z')"

The independence of C to 1,, is a result of the flux symmetry. The relative

counting rates for a specific size crystal are given in Figure 7 for various

assumed angular distributions. Two different limb angles corresponding to

different altitudes for the detector are shown. At higher energies Stecker

(Reference 8) has proposed a model for and calculated the scanning angle distri-

bution of albedo gamma rays. This distribution was found by Stecker to be well

approximated by a secant up to about 500. It was found that a disc shaped

detector gave a greater variation in counting rate for this model than an equal

18



volume (mass) rod shaped detector. In addition the disc gives a better differen-

tiation between different exponents of the secant. It can be seen that if the limb

angle is known the departure from a secant distribution at the medium energies

(3-10 MeV) can be determined with a disc shaped detector.

9. Summary

The cases which have been described involve either determining the intensity

of a particular flux in a predetermined background or descriminating among a

limited number of flux distributions. The general formulae can be used to de-

scribe any flux distributions which can be reduced to integrations over parallel

beams if an iterative scheme is used. Iteration is necessary because the quan-

tities r7 and E used to calculate the flux from the counting rate are themselves

dependent on the flux distribution. After the first analysis of the data the effi-

ciencies can be redetermined in order to calculate the flux distribution again,

and so forth.

We feel, therefore, that a flat cylindrical crystal in a small satellite to keep

local background problems to a minimum is a viable system for studying gamma

ray flux distributions from orbit.
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Figure 6. Polar plot of the relative effective detector cross sectional area Np(E, 7T/2) as a

function of 0 for a 40.62 cm. x 2.54 cm. thick cylindrical Csl crystal and 4 MeV protons.
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Figure 7. Calculated Counting rate variation relative to maximum as a function of detector orientation in atmospheric
albedo; 8.89 cm rad x 2.5 cm thick crystal, 1.5 MeV gamma rays.


